从1加到365的和可以通过等差数列的求和公式来计算,公式为:

\[

\text{和} = \frac{(首项 + 末项) \times 项数}{2}

\]

在这个例子中,首项 \(a_1 = 1\),末项 \(a_n = 365\),项数 \(n = 365\)。将这些值代入公式中,我们得到:

\[

\text{和} = \frac{(1 + 365) \times 365}{2} = \frac{366 \times 365}{2} = 66795

\]

因此,从1加到365的和是 66795